
NASA Contractor Report 201618

ICASE Report No. 96-63

it� • /

ICA
INTERACTIVE EXPLORATION OF LARGE

3-D UNSTRUCTURED-GRID DATA

Kwan-Liu Ma

Scott Leutenegger

Dimitri Mavriplis

NASA Contract No. NAS1-19480

October 1996

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23681-0001

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-0001

Interactive Exploration of
Large 3-D Unstructured-Grid Data

Kwan-Liu Ma t

Institute for Computer Applications in Science and Engineering

Scott Leutenegger t

Mathematics and Computer Science Department

University of Denver

Dimitri Mavriplis t

Institute for Computer Applications in Science and Engineering

Abstract

Visualizing unstructured-grid data from aerodynamics calculations is challenging because

of the associated meshes are typically large in size and irregular in both shape and resolu-

tion. This research investigates appropriate data structures and rendering methods to allow

interactive exploration of the data.

In conjunction with fast splatting rendering, a multiresolution data representation based

on agglomeration is used to make possible interactive visualization on a workstation. That

is, data are rendered at a particular resolution according to visualization paramenters as well

as the speed and memory capacity of the workstation. Interactive visualization allows the

user to quickly determine regions of interest and important visualization parameters such as

viewing direction and transfer functions.

We then apply a more accurate, expensive rendering method to the orignal data on the

regions of interest. The original data are stored on disk. We show with both analysis and

experimental results that R-tree is a better data structure for fast retrieval of such disk-

resident data.

tThis research was supported by the National Aeronautics and Space 'Administration under NASA con-
tract NAS1-19480 while the author was in residence at the Institute for Computer Applications in Science

and Engineering (ICASE)_ NASA Langley Research Center, Hampton, VA 23681-0001.

1 Introduction

In aerodynamics calculations, unstructured grids are used to model objects with complex

geometry. Because the grids are typically large in size and irregular in shape and resolu-

tion, often special data processing and rendering algorithms are needed to make possible

visualization of the simulation results. This research studies the needed software support

for conducting the desirable iterative, near-interactive visualization process to analyze very

large unstructured-grid data on an average workstation.

The proposed visualization process includes mainly two steps as shown in Figure 1. The

first step attempts to derive desirable viewing and rendering parameters and to locate re-

gions of interest, a sub-volume. This may be performed on a workstation using a fast but

less accurate rendering algorithm on a coarse representation, thus a much smaller version,

of the original data stored in the main memory of the workstation. Consequently, we need

a multi-resolution representation of the original data (mrrd). The mrrd allows interactive

exploration of the data. Once a hot spot is identified at a particular resolution, the user

may switch to viewing at a higher-resolution for further exploration. This exploration pro-

cess continues until the region of interest and viewing as well as rendering parameters are

completely determined. We use a fast, approximated splatting algorithm for rendering data

at resolutions according to visualization requirements, as well as the speed and memory

capacity of the workstation.

The second step takes the parameters derived, extracts the selected sub-volume out of the

original data, and invokes a more accurate rendering program to produce high quality visu-

alization results. This step may be performed on either a workstation or a high-performance

computer. The sub-volume represents a spatial region of interest usually much smaller than

the overall grid domain and thus may be rendered more efficiently on a workstation. Note

that because of its size, the original data set must be stored on disk. It is then essential to

have adequate database support such that a sub-volume can be quickly retrieved from disk.

Therefore, we represent the data as an R-tree [13], an efficient hierarchical data structure

that has been widely adopted by many database applications.

Data exploration is inherently iterative. The visualization process and system architec-

ture developed in this research allow computational scientists to study their data at the

highest possible resolution in a more efficient manner, rather than reducing the data or op-

erating at a very inefficient batch-mode. In this paper, we describe the construction of the

rnrrd, demonstrate the effectiveness of the fast splatting rendering method, and show that R-

trees work better than octrees which have been widely used by the visualization community.

Test results were obtained by using a four-million tetrahedra-cell data set on workstations.

Fast data exploration at multiple resolutions
to determine regions of interest, rendering
and viewing parameters.

)

Figure 1: The proposed visualization process and system architecture.

2 Multi-resolution Rendering

Multiresolution data visualization has been an active area of research but most previous

work has been concentrated with data on rectilinear grids [19, 2]. In particular, wavelet-

based methods have drawn a lot of attention recently [17, 10]. Some multiresolution repre-

sentations have been designed for triangular surface meshes [14, 3]. For general unstructured

grids, only some preliminarily theoretical work exists [1]. In the following sections, we pro-

pose a simplified data representation and rendering method to facilitate interactive data

exploration.

2.1 Data Representations

The generation of a multiresolution sequence representation of a given arbitrary data-set is

a non-trivial one. For data on rectilinear grids, coarser resolution levels may be constructed

simply by removing every n-th point in each coordinate direction. For general unstructured

grids, the construction of a sequence of nested coarser grid levels is usually not possible.

One approach is to interpolate the data onto a regular cartesian grid which can then be

coarsened in the standard fashion. Alternatively, a nested sequence of unstructured grids

may be constructed by repeatedly subdividing the cells of an initial coarse unstructured grid.

and the data may then be interpolated onto the finest level of this sequence. This approach

has the drawback of introducing interpolation errors into the original data, although this

may not be crucial for our application of fast-rendering. On the other hand, when the

original data-set contains large variations in spatial resolution, as is most often the case in

our applications, the approximating regular or nested grid may be much larger than the

original grid itself.

An alternative is to attempt to coarsen the original unstructured mesh through techniques

such as decimation [16, 15]. Decimation involves removing a subset of the original grid

points and retriangulating the remaining points. One of the difficulties with decimation is

the retriangulation phase. For complex geometries, the requirement of reconstructing a valid

grid connectivity which conforms to the domain boundaries becomes increasingly difficult for

coarser levels. Because we rely on a splatting technique for fast rendering of our coarse level

data-sets, a valid boundary conforming grid on the coarse levels is not required. Rather,

a set of points defined by their coordinates and a length scale to determine the size of the

splat for each point are all that is required. We therefore use an agglomeration technique to

construct coarse levels [9].

Given an initial graph (set of points and edges), the agglomeration procedure produces

a coarser graph based on a subset of the original set of points. If the original graph ap-

proximates a nearest neighbor graph, the agglomerated graphs are also approximations to

nearest neighbor graphs of the coarser point sets. Agglomeration consists of picking a fine

grid vertices known as a seed points, and deleting their neighboring vertices as depicted in

Figure 2. The seed points form the coarse grid points for the next level. In practice, we use

a heuristic algorithm to produce coarse grid point sets that are maximal independent sets of

the original fine grid points. The deleted points can be thought of as fused or agglomerated

into their respective seed point. The inferred graph for the coarse level is then obtained by

deleting all edges within an agglomerated group of points, and replacing all edges between

neighboring agglomerated groups with a single edge, using a hash table. The size of the

coarse level splats can then be determined by considering the average length of all edges

incident to each coarse level point in the agglomerated graph.

2.2 Rendering

Splatting was first introduced by Westover [18] and has been used as a fast approximation

technique for rendering data on uniformly-spaced rectilinear grids. An image is formed by

determining the screen space contribution of each grid point-a footprint-and compositing

the footprints on top of each other in the visibility order. For parallel projection, a single

footprint table can be pre-calculated and shared by all the voxels.

Applying splatting to unstructured-grid data allows us to ignore the type of computa-

tional cells we are dealing with. However. because of the unstructured nature of the grid,

a separate footprint must be constructed for each grid point. Using parallel projection, fur-

3

Figure 2: Agglomeration.

ther approximation has been taken by always representing a footprint with a circle. So each

footprint is now defined by the scalar value (e.g. density or pressure) and coordinates of the

corresponding grid point, and a radius value which is the average distance from the point to

all other immediately neighboring points. In this way, we can approximate each footprint,

for example, as an octagon, with a set of hardware Gouraud-shaded triangles as described

in [6]. Compositing is done with the hardware blending support. In this way, we can achieve

good rendering rates. However, in this research, software splatting is used such that high

performance general-purpose workstations may be used.

The multiple levels of approximation taken certainly degrade the quality and accuracy

of visualization results. The goal is to have a quick view of the data. Although our approxi-

mated splatting approach provides a crude picture of the actual physical phenomena, it gives

the viewer a pretty good impression about the size, shape, location of the phenomena.

2.3 Visualization Results

To demonstrate the effect of applying the splatting rendering to tlae multi-resolution repre-

sentations, we use a data set containing six different resolutions as listed in Table 1. Table 2

shows the performance of a software implementation of the approximated splatting algorithm

on an SGI Indigo2 with an R4400 250MHZ processor. Times are in seconds. Image of two

different sizes are rendered: 400×400 and 200×200 pixels. Figure 6,7,8,9,10 and 11 display

the rendered images. Figure 3 plots the surface mesh of the overall domain explored; the

4

Table 1: Multi-resolution M6 wing data

resolution # vertices # bytes

r0 357900

rl 52656

r2 8357

r3 1669

12.8M

1.89M

300K

60K

r4 448 16K

r5 161 5.8K

Table 2: Timing results of multiresolution splatting

res. read I sort

r0 2.1 3.4

rl 0.3 0.3

r2 0.1 0.05

r3 0.02 0.01

r4 0.02 0.01

r5 0.02 0.01

render (2002) render (4002)

5.23

2.03

1.11

1.3

12.9

6.4

4.0

5.2

2.18 8.6

2.33 9.4

dark, dense area corresponds to the region of interest which isnear the tip of the wing.

From the timing results and corresponding rendered images, we learn that there is always

a particular resolution of the mrrd with which we can see sufficient details to identify areas of

interest at relatively low cost. In this case, both resolution rl and r2 would work well when

generating 200x200-pixel images. By taking advantage of the graphics hardware support,

sub-second rendering rates can be achieved, making this setup even more attractive. How-

ever, note that the rendering time increases dramatically when using much lower resolution

data like r4 and r5. This is because each vertex now covers a much large area (the footprint)

which becomes expensive to calculate in software. This indicates that very low resolutions

like r4 and r5 should not be included in the mrrd since images from them are too fuzzy and

expensive to be useful.

3 Fast Retrieval of Disk Resident Data

To find a subset in a memory resident data set one would normally employ ADT, k-d or

quad/oct trees to reduce the search space. These memory based indexing techniques are not

appropriate for our disk based data sets since they have poor paging behavior. When dealing

Figure 3: Overall domainasa surfacemesh.

with disk baseddata, the primary objective is to minimize the number of pagesread from
disk sincea disk accessis two to three orders of magnitudeslower than memoryaccesses.
Of the main memorydata structures, the most likely candidatesfor disk baseddata would
bequad/octrees,but they sufferfrom the following deficiencies:

• Octreeswill be imbalancedfor unstructured data. Schemesto preprocessthe data to
determinewhereto put partitioning lines could be constructed to provide balanceto
somedegree.

• Packingthe octreenodesinto disk pagesto get good paging behavior is difficult.

• Octreeshavea low fan-out of 8. R-trees have a fan-out of 146 for 4096 byte pages. If

the number of items indexed is N, the number of nodes needing to be accessed for a

small search is O(logsN) for octree versus O(log146N). Note, how the number of nodes

accessed turns into the number of disk pages accessed is dependent on the mapping

from nodes to pages for octrees, and is 1-1 for R-trees.

• Octrees are designed for point data, not region data like tetrahedra.

There are many structures for indexing disk resident data., for indexing both multi-

dimensional point data and region data one of the best structures is the R-tree [4]. With

static data, R-trees can be loaded to 100% disk utilization and provide efficient access.

6

3.1 R-trees

An R-tree is a hierarchical data structure derived from the B-tree and designed for efficient

execution of intersection queries. R-trees can be used for any number of dimensions. For

clarity and brevity we limit our discussion to the two-dimensional case but our results are for

the three dimension case. R-trees store a collection of rectangles which can change over time

through insertions and deletions. Arbitrary geometric objects are handled by representing

each object by the smallest upright rectangle which encloses the object.

Each node of the R-tree stores a maximum of n entries. Each entry consists of a rect-

angle R and a pointer P. For nodes at the leaf level, R is the bounding box of an actual

object pointed to by P. At internal nodes, R is the minimum bounding rectangle of all

rectangles stored in the subtree pointed to by P. Note that every path down through the

tree corresponds to a sequence of nested rectangles, the last of which contains an actual data

object. Note also that rectangles at any level may overlap and that an R-tree created from

a particular set of objects is by no means unique.

To perform a query Q, all rectangles that intersect the query region must be retrieved

and examined (regardless of whether they are stored in an internal node or a leaf node).

This retrieval is accomplished by using a simple recursive procedure that starts at the root

node and which may follow several paths down through the tree. A node is processed by first

retrieving all rectangles stored at that node which intersect Q. If the node is an internal node,

the subtrees corresponding to the retrieved rectangles are searched recursively. Otherwise,

the node is a leaf node and the retrieved rectangles (or the data objects themselves) are

simply returned. See [4] for a more detailed description of R-tree structures and searching.

3.2 Packing Algorithms

R-trees and variants allow for dynamic insertion and deletion at the expense of efficient

search times. When the data is all present at load time and non-changing, as in our CFD

data sets, preprocessing can be done to create more efficient R-trees. Such preprocessing is

known as R-tree packing [12], and result in well structured trees for efficient queries and

100% disk utilization. Several algorithms exist [5, 7, 12]. We choose to focus on the Sort and

Tile Recursive (STR) algorithm [7] since it is the easiest to implement and has been shown

to provide more efficient point query support and at least as efficient region query support

as the others [7].

In the following text we assume a data file of r rectangles and that each r-tree node can

hold n rectangles. The general process is similar to building a B-tree from a collection of

keys by creating the leaf level first and then creating each successively higher level until the

root node is created [11].

7

General Algorithm:

°

.

.

Preprocess the data file so that the r rectangles are ordered in [r/n] consecutive groups

of n rectangles, where each group of n is intended to be placed in the same leaf level

node. Note that the last group may contain less than n rectangles.

Load the [r/n] groups of rectangles into pages and output the pair (MBR, page-

number) for each leaf level page into a temporary file. The page-numbers are used as

the child pointers in the nodes of the next higher level.

Recursively pack these MBRs into nodes at the next level and continue proceeding

upward until the root node is created.

The above packing algorithms differ only in how the rectangles at each level are ordered.

The STR algorithm orders rectangles as follows:

"Tile" the data using V/_/n rectangular buckets of various sizes so that each bucket

contains roughly _/_/n input rectangles. Once again we assume coordinates are for

the center points of the rectangles. First sort the rectangles based on x-coordinate.

Determine the number of leaf level pages P = Jr/hi and let S = Iv/P]. Now divide

the rectangles into S vertical slices so that each vertical slice contains S * n rectangles.

Sort the rectangles from each slice based on y-coordinate and pack them into nodes

(the first n rectangles into the first node, the next n into the second node, and so on).

Note the sorting mentioned above is disk based sorting using merge sort if the files are too

large to be sorted in main memory. We call an r-tree created by STR packing an STR-tree.

3.3 Analysis

In this section we present analysis comparing the niamber of pages accessed by brute force,

octrees, and R-trees. To make the comparison of R-trees with octrees more convincing we

give every benefit of the doubt to octrees. Specifically, we make the following optimistic

assumptions for octrees:

• The tree is perfectly balanced.

• The paging behavior is perfect, if N octree nodes can fit in a disk page and we access

M nodes, then we only access [M/N] disk pages.

• We assume all data is at the leaf level and there is no tree structure to navigate.

T

N

NA

PA

BT

qx

qY

qz
S

8

Table 3: Notational Definitions

Number of tetrahedra

Number of nodes

Number of nodes accessed by a query

Number of disk pages accessed by a query

Number of bytes per tetrahedra

The x-distance of a query

The y-distance of a query

The z-distance of a query

The number of nodes per side of the data cube

The average utilization of an octree node

• We assume the tree can be of size cube-root of the number of nodes, we do not restrict

it to be a power of 8.

A real octree on unstructured data will have some skew and/or suffer from underutilized

nodes. In addition, the mapping of oetree nodes into pages will be suboptimal. In order

to get good balance for unstructured data a tree structure will be necessary. Ignoring the

non-leaf level accesses for both the octree and R-tree is favorable to the oct tree since the

number of nodes accessed in a point search (find one specific point) by the octree is O(logsT)

versus O(tog_46T) for the R-tree, where T is the number of tetrahedra being indexed. Given

these optimistic assumptions, we now derived the worst case number of nodes accessed for a

region query of size qx * qy * qz. Table 3 lists the notations used.

The number of disk pages accessed for a query of region qx * qy * qz for the octree is

derived as follows:

Noc,= T/(8,/3) (1)

NAoct = (qx •Soc, + 1). (qy • Soot + 1). (qz • Soot + 1)

N Ao_t

PAo_, = 4096/(8)k BT)

The number of disk pages accessed for a query of region qx * qy *

derived as follows:

(3)

(4)

qz for the STR-tree is

9

Nstr = T/L(4096/BT)J (5)

(6)

NAstT = (qx , Sstr + 1).(qy, SstT + 1)-(qz, S_,r + 1) (7)

PA_t_ = NAstr

PA_t_ = NA_t_ since one R-tree node is one disk page.

The number of disk pages accessed for the brute force method is simply:

T*BT

Pab_,,_= W -4-09-6]

(8)

(9)

In Figure 4 we present the number of disk accesses versus the percent of the data size

assuming 10,000,000 tetrahedra where each tetrahedra occupies 28 bytes (x y z vl v2 v3

v4). Page size is 4096 bytes. If you assume all the optimistic assumptions and 100% node

occupancy for the octree, the octree is slightly better than the STR-tree. Once the occupancy

is reduced to more realistic values, the octree requires up to a factor of two more page

accesses. We hypothesize that once the skew and poor paging characteristics of an octree

are considered, the performance will be significantly worse. In the future we intend to

implement octree methods to compare experimentally with the STR-tree.

3.4 Tests Using a Local Disk

To compare subset retrieval time using our STR-tree based method versus brute force, we

have performed tests on an SGI Indigo2 with an R4400 250MHZ processor, 128 MB main

memory, and a dedicated disk.

3.4.1 Methodology

The data set used as a test case is an unstructured 3-d CFD grid consisting of 804,056 nodes

and 4,607,888 tetrahedra. The data is stored in two binary files. The node file stores vortex

coordinates, 5 CFD solution values and a node id. The tetrahedra file stores the values that

delimit the lower and upper points of the smallest upright 3D region enclosing the tetrahedra

and the indices of the nodes that make up the vertices of the tetrahedra. A more compact

format omitting the region bounding information may be use, but this would disallow the

use of R-trees or octrees and necessitate use of the brute force method and its resultant

abysmal performance.

10

_9

_0

ID
¢D

<

120000

100000

80000

60000

40000

20000

, I i i ,

octree 60%
octree 70% --_....
octree 80%
octree 90%

octree 100%
STR-tree

;+," ."

," ..-'

brute force -o--- '" _ ._

OC'--'_ "e _ _ _""" "_''0 - - "",':'- 0"" ''*''" 0 "" _'_2'• :"'_"

., ,. × .' ,,

/" EJ' -"" .-'" -"*

,' ,'" X' .'" .'"

,,'" -" X" ."'-

0 10 20 30 40 50 60 70 80 90 100
Percent Data Returned

Figure 4: Analysis using 10 million tetrahedra.

The brute force method is as follows: a) read through the node file and return all nodes

that are contained in the specified subset region; b) read thought the tetrahedra file and

return all tetrahedra that are contained in the specified subset. The code has been optimized

to read in 16K chunks at a time. Note, we ran some experiments with different blocking

factors and found buffer of 16K to minimize input time.

The STR-tree based method creates two STR-trees, one for the node file and one for the

tetrahedra file. The trees are then used for the searches, hence only the relevant data plus

a small portion of overhead nodes are read in from memory. Note, the STR-trees are stored

using the normal UNIX file system, no attempt to tune performance by clustering the nodes

on raw disk was made.

The absolute and relative performance of the two policies is highly dependent on many

factors, the most important being main memory size, whether the disk is local or across a

network (such as when using NFS), and disk speed versus processor speed. Main memory size

is especially relevant since the file system will cache pages of files in main memory between

runs. Thus if main memory is sufficient ally large, s.ubsequent runs will incur n'o actual disk

I/O, only soft page faults.

Our primary comparison metric was the wall clock time (obtained from the rusage system

call) to run a subset retrieval. Note, CPU time is not sufficient since most of the time is

spent in disk retrieval. We also present the number of disk reads for the experiments. There

was some variance in measured response times. All data points presented are the average of

11

40 runs for the same subset region. No attempt at generating confidence intervals was made.

3.4.2 Local Disk Results

In the first set of experiments we alternate running the brute force method with the R-

tree method. This has the effect of the brute force method flushing some of the remaining

pages from the buffer pool from the previous STR-tree retrieval. Thus, performance of

the STR-tree method is worse than it would be ina setting of repeated queries. Figure 5

presents results for retrievals of subsets where the regions are cubes centered on the origin

and increasing in size.

For a region boundary containing 164,251 tetrahedra (about 3.6% of the overall data) or

less, response time is less than 5 seconds for the STR-tree method but 44 seconds or greater

for the brute force method. Note that the STR-tree method results in access times that are

9.7 to 16.4 times faster than the brute force method.

As the query region increases, the response time for the brute force method is constant

whereas that of the STR-tree method increases. The brute force method reads in the entire

data set each time, regardless of the region size. The STR-method only brings in data for the

desired region plus some extra data from around the surface of the subset region. According

to our test results, the number of actual page reads for the STR-tre method is significantly

smaller than the brute force method until retrieving more than 40% of the data.

So far we assume the entire memory contents from the previous STR-tree query are

flushed before re-running. In a real interactive setting the user would likely select sub-

regions repetitively. Since the file cache or virtual memory system will buffer some of the

data between runs, we would expect better performance due to memory hits. How much

better depends on how much of the data is re-used in subsequent queries. We would certainly

expect the top levels of the STR-tree to be in memory [8].

Devising a string of query regions as a benchmark is not easy to do in an unbiased way.

Instead, we rerun the same query 41 times and remove the response time of the first run.

This provides a lower bound on the expected response time since we would expect only some

of the data to be reused, not all of it. Figure 5 also includes the results for these repetitive

optimistic bounds. Note, the brute force method does not benefit since it must still read in

the same number of disk pages, but the STR-tree based method experiences a substantial

reduction in response time. The actual response times would fall somewhere between these

two extremes and be dependent on the query string. Finally, if splatting rendering is used,

we only need to bring back the node data. In this case, the retrieval time is very small and

could support interactive visualization.

12

¢0

"1_
t-

O

O9
¢-

E
F-

0
0

0

6O

5O

4O

3O

2O

10

0

| , i _ .k.

/

brute force(tetra) --o.... /
STRtree alt(tetra) --_.... z

STRtree seq(tetra)
STRtree seq(node)

./

/ /

/

/,• /
/

// /
• /

12I" /

// /

/'" /

/ :
/ ...¢2

.... .+

..... +"" -x -x

10 20 :30 40 50 60
Percent Data Retumed

Figure 5: Experimental Results, Local Disk

3.4.3 Anticipated Effect of Larger Data Sets

The data set used in these experiments is much smaller than anticipated future data sets.

When a data set is 10-100 times larger, searches using the brute force method will require

10-100 times more time, whereas we expect the STR-tree method to only require a modest

amount (0-1%) more time. The reason is that with a branching factor of 146, one can

increase the data size by a factor of 146 and only add one level to the STR-tree, and hence

one more page access, Thus, we expect for near future data sets the STR-tree method will

be yet another 10-100 times faster relative to brute force.

4 Conclusions

We have demonstrated that coupling mrrd with the fast splatting rendering method allows

near-interactive visualization on an average workstation. A more compact mrrd would allows

higher resolution representations resident in main memory. The current splatting method

produces semi-transparent cloud like rendering. We are developing techniques for marking

features, such as the geometric outline of an airplane, onto the volume rendered image to

provide additional visual cues, which help select viewing position and identify correlations.

We have also shown that the R-tree is a more efficient data structure for retrieving disk-

resident data. We intend to conduct more extensive comparison tests of the data retrieval

13

methods involved. First we plan to implement well balanced octrees for comparison. Next

we intend to test the techniques on much larger data sets, 20-500 million tetrahedra. For

these larger data sets we expect the brute force method will be 3 orders of magnitude slower

than STR-trees. We should also conduct tests using a remote disk and use multiple disks to

distribute an extremely large data set.

References

[1] ABGRALL, R., AND HARTEN, A. Multiresolution Representation in Unstructured

Meshes. I. Preliminary Report. Tech. Rap. UCLA CAM Report 94-20, July 1994.

[2] CIGNONI, P., DE FLORIANI, L., MONTANI, C., PUPPO, E., AND SCOPIGNO, a.

Multiresolution Modeling and Visualization of Volume Data Based on Simplicaial Com-

plexes. In Proceedings of the 1994 Symposium on Volume Visualization (1994), pp. 19-

26.

[3]

[4]

[5]

[6]

ECK, M., DEROSE, T., DUCHAMP, T., HOPPE, H., LOUNSBERY, M., AND STUET-

ZLE, W. Multiresolution Analysis of Arbitrary Meshes. In SIGGRAPH '95 Conference

Proceedings (1995), pp. 173-182.

GUTTMAN, A. R-trees: a Dynamic Index Structure for Spatial Searching. In Proceed-

ings of the ACM SIGMOD (1984), pp. 47-57.

KAMEL, I., AND FALOUTSOS, C. On Packing R-trees. In Proceedings of the 2nd Inter-

national Conference on Information and Knowledge Management (CKIM-93) (Novem-

ber 1993), pp. 490-499.

LAUR, D., AND HANRAHAN, P. Hierarchical Splatting: A Progressive Refinement

Algorithm for Volume Rendering. In Proceedings of SIGGRAPH '91 (1991), pp. 285-

288.

[7] LEUTENEGGER, S., EDGINGTON, J., AND LOPEZ, M. STR: A Simple and Efficient

Algorithm for R-Tree Packing. Tech. Rep. Technical Report # 96-1, University of

Denver Computer Science, 1996.

[8] LEUTENEGGER, S., AND LOPEZ, M. The Effect of Buffering on the Performance of

R-Trees. Tech. Rep. Technical Report # 96-2, University of Denver Computer Science,

1996.

[9] MAVRIPLIS, D., AND VENKATAKRISHNAN, V. Agglomeration Multigrid for Viscous

Turbulent Flows. Tech. Rep. ICASE Report No. 94-62, Institute for Computer Appli-

cations in Scinece and Engineering, 1994.

14

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

MURAKI, S. Multiscate 3D Edge Representation of Volume Data by a DOG Wavelet.

In Proceedings of the 1994 Symposium on Volume Visualization (1994), pp. 35-42.

ROSENBERG, A., AND SNYDER, L. Time and Space Optimality in B-Trees. ACM

Transactions on Database Systems 6, 1 (March 1981).

ROUSSOPOULOS, N., AND LEIFKER, D. Direct Spatial Search on Pictorial Databases

Using Packed R-trees. In Proceedings of the ACM SIGMOD (May t985).

SAMET, H. The Design and Analysis of Spatial Data Structures. Addison Wesley, 1989.

SCHRODER, P., AND SWELDENS, W. Spherical Wavelets: Efficiently Representing

Functions on the Sphere. In SIGGRAPH '95 Conference Proceedings (1995), pp. 161-

172.

SCHROEDER, W., ZARGE, J. A., AND LORENSEN, W. E. Decimation of Triangle

Meshes. In SIGGRAPH '92 Conference Proceedings (1992), pp. 65-170.

TURK, G. Re-Tiling Polygonal Surfaces. In SIGGRAPH '92 Conference Proceedings

(1992), pp. 55-64.

WESTERMANN, R. A Multiresolution Framework for Volume Rendering. In Proceedings

of the 1994 Symposium on Volume Visualization (1994), pp. 51-58.

WESTOVER, L. Footprint Evaluation for Volume Rendering. In Proceedings of SIG-

GRAPH '90 (1990), pp. 267-276.

WILHELMS, J., AND VAN GELDER, A. Multi-Dimensional Trees for Controlled Vol-

ume Rendering and Compression. In Proceedings of the 1994 Symposium on Volume

Visualization (1994), pp. 27-34.

15

Figure 6: Highest resolution: r0.
Figure 9: Resolution: r3.

Figure 7: Resolution: rl. Figure 10: Resolution: r4.

Figure 8: Resolution: r2. Figure 11: Lowest resolution: r5.

16

I FormApprovedREPORT DOCUMENTATION PAGE OMB No. 0704.0188

Pubcreportngburdenforthiscollectionof informationisestimatedto average] hourper responseincludingthetimeforreviewinKinstructions,searchingexistingdatasources,
gatheringandmaintainingthe dataneededandcompletingandreviewingthecollectionof informationSendcommentsregardingthisburdenestimateoranyotheraspectofthis
collectionofinformation.*ncludingsuggestionsforreducingthisburden,to WashingtonHeadquartersServices.DirectorateforInformationOperationsandReports,]215Jefferson
DavisHighway,Suite1204.Arlington.VA22202-4302.andto theOfficeofManagementandBudget.PaperworkReductionProject(0704-0188),Washington.DC20503

I. AGENCY USE ONLY(Leaveblank) 2. REPORT DATE
October 1996

4. TITLE AND SUBTITLE

INTERACTIVE EXPLORATION OF LARGE

3-D UNSTRUCTURED-GRID DATA

3. REPORT TYPE AND DATES COVEREDContractor Report

5. FUNDING NUMBERS

6. AUTHOR(S)
Kwan-Liu Ma

Scott Leutenegger

Dimitri Mavri_lis

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering

Mail Stop 403, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

C NAS1-19480

WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No, 96-63

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA CR-201618

ICASE Report No. 96-63

II. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell

Final Report
Submitted to 1997 Symposium on Interactive 3D Graphics.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

12b. DISTRIBUTION CODE

Subject Category 60, 61

13. ABSTRACT (Maximum 200 words)
Visualizing unstructured-grid data from aerodynamic calculations is challenging because of the associated meshes

are typically large in size and irregular in both shape and resolution. This research investigates appropriate data

structures and rendering methods to allow interactive exploration of the data.

In conjunction with fast splatting rendering, a multiresolution data representation based on agglomeration is used

to make possible interactive visualization on a workstation. That is, data are rendered at a particular resolution

according to visualization parameters as well as the speed and memory capacity of the workstation. Interactive
visualization allows the user to quickly determine regions of interest and important visualization parameters such as

viewing direction and transfer functions.

We then apply a more accurate, expensive rendering method to the original data on the regions of interest. The

original data are stored on disk. We show with both analysis and experimental results that R-tree is a better data
structure for fast. retrieval of such disk-resident data.

14. SUBJECT TERMS
interactive visualization; volume rendering; multiresolution data representations;
hierarchical data structures unstructured meshes

17. SECURITY CLASSIFICATION
OF REPORT
Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION
OF THIS PAGE OF ABSTRACT
Unclassified

15. NUMBER OF PAGES
18

16. PRICE CODE
A03

20. LIMITATION
OF ABSTRACT

Standard Form298(Rev. 2-89)
PrescribedbyANSIStd Z39-lB
298-102

